184 lines
7.5 KiB
Python
184 lines
7.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
from __future__ import absolute_import, division, unicode_literals
|
|
from builtins import str
|
|
from builtins import range
|
|
from logging import getLogger
|
|
from re import sub
|
|
from string import punctuation
|
|
|
|
from ..downloadutils import DownloadUtils as DU
|
|
from .. import utils, variables as v
|
|
|
|
LOG = getLogger('PLEX.api.fanartlookup')
|
|
|
|
API_KEY = utils.settings('themoviedbAPIKey')
|
|
|
|
# How far apart can a video's airing date be (in years)
|
|
YEARS_APART = 1
|
|
# levenshtein_distance_ratio() returns a value between 0 (no match) and 1 (full
|
|
# match). What's the threshold?
|
|
LEVENSHTEIN_RATIO_THRESHOLD = 0.95
|
|
# Which character should we ignore when matching video titles?
|
|
EXCLUDE_CHARS = set(punctuation)
|
|
|
|
|
|
def external_item_id(title, year, plex_type, collection):
|
|
LOG.debug('Start identifying %s (%s, %s)', title, year, plex_type)
|
|
year = int(year) if year else None
|
|
media_type = 'tv' if plex_type == v.PLEX_TYPE_SHOW else plex_type
|
|
# if the title has the year in remove it as tmdb cannot deal with it...
|
|
# replace e.g. 'The Americans (2015)' with 'The Americans'
|
|
title = sub(r'\s*\(\d{4}\)$', '', title, count=1)
|
|
url = 'https://api.themoviedb.org/3/search/%s' % media_type
|
|
parameters = {
|
|
'api_key': API_KEY,
|
|
'language': v.KODILANGUAGE,
|
|
'query': title.encode('utf-8')
|
|
}
|
|
data = DU().downloadUrl(url,
|
|
authenticate=False,
|
|
parameters=parameters,
|
|
timeout=7)
|
|
try:
|
|
data = data['results']
|
|
except (AttributeError, KeyError, TypeError):
|
|
LOG.debug('No match found on themoviedb for %s (%s, %s)',
|
|
title, year, media_type)
|
|
return
|
|
LOG.debug('themoviedb returned results: %s', data)
|
|
# Some entries don't contain a title or id - get rid of them
|
|
data = [x for x in data if 'title' in x and 'id' in x]
|
|
# Get rid of all results that do NOT have a matching release year
|
|
if year:
|
|
data = [x for x in data if __year_almost_matches(year, x)]
|
|
if not data:
|
|
LOG.debug('Empty results returned by themoviedb for %s (%s, %s)',
|
|
title, year, media_type)
|
|
return
|
|
# Calculate how similar the titles are
|
|
title = sanitize_string(title)
|
|
for entry in data:
|
|
entry['match_score'] = levenshtein_distance_ratio(
|
|
sanitize_string(entry['title']), title)
|
|
# (one of the possibly many) best match using levenshtein distance ratio
|
|
entry = max(data, key=lambda x: x['match_score'])
|
|
if entry['match_score'] < LEVENSHTEIN_RATIO_THRESHOLD:
|
|
LOG.debug('Best themoviedb match not good enough: %s', entry)
|
|
return
|
|
|
|
# Check if we got several matches. If so, take the most popular one
|
|
best_matches = [x for x in data if
|
|
x['match_score'] == entry['match_score']
|
|
and 'popularity' in x]
|
|
entry = max(best_matches, key=lambda x: x['popularity'])
|
|
LOG.debug('Found themoviedb match: %s', entry)
|
|
|
|
# lookup external tmdb_id and perform artwork lookup on fanart.tv
|
|
tmdb_id = entry.get('id')
|
|
parameters = {'api_key': API_KEY}
|
|
if media_type == 'movie':
|
|
url = 'https://api.themoviedb.org/3/movie/%s' % tmdb_id
|
|
parameters['append_to_response'] = 'videos'
|
|
elif media_type == 'tv':
|
|
url = 'https://api.themoviedb.org/3/tv/%s' % tmdb_id
|
|
parameters['append_to_response'] = 'external_ids,videos'
|
|
media_id, poster, background = None, None, None
|
|
for language in (v.KODILANGUAGE, 'en'):
|
|
parameters['language'] = language
|
|
data = DU().downloadUrl(url,
|
|
authenticate=False,
|
|
parameters=parameters,
|
|
timeout=7)
|
|
try:
|
|
data.get('test')
|
|
except AttributeError:
|
|
LOG.warning('Could not download %s with parameters %s',
|
|
url, parameters)
|
|
continue
|
|
if collection is False:
|
|
if data.get('imdb_id'):
|
|
media_id = str(data.get('imdb_id'))
|
|
break
|
|
if (data.get('external_ids') and
|
|
data['external_ids'].get('tvdb_id')):
|
|
media_id = str(data['external_ids']['tvdb_id'])
|
|
break
|
|
else:
|
|
if not data.get('belongs_to_collection'):
|
|
continue
|
|
media_id = data.get('belongs_to_collection').get('id')
|
|
if not media_id:
|
|
continue
|
|
media_id = str(media_id)
|
|
LOG.debug('Retrieved collections tmdb id %s for %s',
|
|
media_id, title)
|
|
url = 'https://api.themoviedb.org/3/collection/%s' % media_id
|
|
data = DU().downloadUrl(url,
|
|
authenticate=False,
|
|
parameters=parameters,
|
|
timeout=7)
|
|
try:
|
|
data.get('poster_path')
|
|
except AttributeError:
|
|
LOG.debug('Could not find TheMovieDB poster paths for %s'
|
|
' in the language %s', title, language)
|
|
continue
|
|
if not poster and data.get('poster_path'):
|
|
poster = ('https://image.tmdb.org/t/p/original%s' %
|
|
data.get('poster_path'))
|
|
if not background and data.get('backdrop_path'):
|
|
background = ('https://image.tmdb.org/t/p/original%s' %
|
|
data.get('backdrop_path'))
|
|
return media_id, poster, background
|
|
|
|
|
|
def __year_almost_matches(year, entry):
|
|
try:
|
|
entry_year = int(entry['release_date'][0:4])
|
|
except (KeyError, ValueError):
|
|
return True
|
|
return abs(year - entry_year) <= YEARS_APART
|
|
|
|
|
|
def sanitize_string(s):
|
|
s = s.lower().strip()
|
|
# Get rid of chars in EXCLUDE_CHARS
|
|
s = ''.join(character for character in s if character not in EXCLUDE_CHARS)
|
|
# Get rid of multiple spaces
|
|
s = ' '.join(s.split())
|
|
return s
|
|
|
|
|
|
def levenshtein_distance_ratio(s, t):
|
|
"""
|
|
Calculates levenshtein distance ratio between two strings.
|
|
The more similar the strings, the closer the result will be to 1.
|
|
The farther disjunct the string, the closer the result to 0
|
|
|
|
https://www.datacamp.com/community/tutorials/fuzzy-string-python
|
|
"""
|
|
# Initialize matrix of zeros
|
|
rows = len(s) + 1
|
|
cols = len(t) + 1
|
|
distance = [[0 for x in range(cols)] for y in range(rows)]
|
|
|
|
# Populate matrix of zeros with the indeces of each character of both strings
|
|
for i in range(1, rows):
|
|
for k in range(1,cols):
|
|
distance[i][0] = i
|
|
distance[0][k] = k
|
|
|
|
# Iterate over the matrix to compute the cost of deletions,insertions and/or substitutions
|
|
for col in range(1, cols):
|
|
for row in range(1, rows):
|
|
if s[row-1] == t[col-1]:
|
|
cost = 0 # If the characters are the same in the two strings in a given position [i,j] then the cost is 0
|
|
else:
|
|
# In order to align the results with those of the Python Levenshtein package, if we choose to calculate the ratio
|
|
# the cost of a substitution is 2. If we calculate just distance, then the cost of a substitution is 1.
|
|
cost = 2
|
|
distance[row][col] = min(distance[row-1][col] + 1, # Cost of deletions
|
|
distance[row][col-1] + 1, # Cost of insertions
|
|
distance[row-1][col-1] + cost) # Cost of substitutions
|
|
return ((len(s)+len(t)) - distance[row][col]) / (len(s)+len(t))
|